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ABSTRACT 

Stochastic reservoir modeling is being increasingly used for modeling 
reservoir heterogeneity. This paper describes a methodology to model the 
distribution of reservoir properties using well data and soft geological knowledge 
in the form of sedimentary and diagenetic patterns. The technique, developed 
based on a combined use of radial basis function (RBF) neural networks and 
geostatistical kriging, is demonstrated with an application to interpolating porosity 
in the A'nan Oilfield, located onshore north China. The integrated technique first 
uses neural networks to estimate the porosity trends from high-dimensional 
geological patterns. Optimization of the network performance is done by 
variogram analysis of the residuals at the conditioning points. Gaussian simulation 
of the residuals is then performed, and the resulting residual maps are combined 
with the porosity trends obtained from neural networks. From the case study, the 
results are realistic and honor the geological rules of the oilfield. The technique is 
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fast and straightforward, and provides a computational framework for conditional 
simulation. 

INTRODUCTION 

Spatial descriptions of reservoir properties such as porosity and 

permeability are key components for performance evaluation and field 

development planning. When wells are sparse and limited, the statistics of the 

well data become unrepresentative, and this poses a great challenge to reservoir 

model building. The recent trend in reservoir characterization is to incorporate 

soft information such as extensive seismic attributes for improved descriptions of 

spatial continuity of extremes. However, many natural phenomena are far too 

complex, and information such as two-point statistics extracted from conventional 

reservoir data (well and seismic) may not be realistic enough to model such 

phenomena. 

Object-based simulation models I such as the Markov random field 

technique present a promising concept to incorporate stochastic geological objects 

into reservoir models. The approach, however, requires many model parameters, 

which are difficult to interpret or infer, and can only handle relatively simple 

objects such as fluvial channels. This explains why many reservoir scientists are 

still reluctant to investigate stochastic algorithms for reservoir modeling. It is 

because they are able to produce realistic results by using conceptual geological 

models2, such as hand drawings by expert geologists. 

Very often, hand drawings from expert geologists contain valuable 

information about the spatial continuity of reservoir properties. The drawings or 

"templates" incorporate important soft geological knowledge (rules) and present a 

comprehensive summary of complex structural, sedimentary and diagenetic 

patterns which are beyond the present tools of two-point statistics (histograms and 

covariances). Wang et al.3, Wong et al.4 and Caers and Journel5 show that the 

neural network approach is a promising tool to handle such information for 

stochastic reservoir modeling, and it may be a viable alternative to object-based 

algorithms. 
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The objective of this paper is to introduce an integrated use of neural 

networks, particularly radial basis function neural networks (RBFNN), and 

kriging 6 to simulate porosity from well data and geological templates. The next 

section will first present a review of RBFNNs, followed by a detailed description 

of model setup and parameter specification. The technique will be demonstrated 

via a case study in the A'nan Oilfield, located onshore north China. 

RADIAL BASIS FUNCTION NEURAL NETWORKS 

A radial basis function (RBF) 7 is a symmetrical transfer function, such as 

the Gaussian function. In spatial interpolation, it transforms the Euclidean 

distance between two multidimensional vectors into a function value. Like most 

neural network methods, radial basis function neural networks (RBFNNs) also 

attempt to mimic simple biological learning processes. The biological 

representation is not apparent, but dendritic trees in the human brain are known to 

simulate a Gaussian-type response when neurons in the retina of the eye produce 

center-weighted responses to small receptive fields. A RBFNN can learn from a 

given set of input-output patterns and is a universal function approximator 7• Its 

application to reservoir characterization includes log evaluation, such as 

permeability prediction from multiple well logs8, and reservoir mapping, such as 

porosity interpolation 4•5 and reservoir top delineation 9•10. The technique is robust 

and can be applied to model non-linear and non-stationary events in a multivariate 

environment. 

The Estimator 

A typical RBFNN contains three layers of processing elements or neurons: 

input, hidden and output layers. Each neuron is connected to every neuron in the 

preceding layer by a simple weighted link. The number of input neurons and 

output neurons depend on the application domain. If we use X-Y coordinates to 

infer porosity, the network will be represented by two input neurons (X,Y) and 

one output neuron (porosity). Fig. I shows the schematic diagram of a RBFNN. 
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Input Layer Hidden Layer Output Layer 

FIG. l. A schematic diagram of a RBNN. 

For the sake of mathematical simplicity, we will limit our discussion to only 

single output networks. 

Each hidden neuron represents a RBF center which is parameterized by a 

position or reference vector c located in the m -dimensional covariate input space 

x. The estimator z • (x) is a weighted sum of the basis function values from the 

hidden layer: 

z·(x)= I wd1~lx-cill) (1) 
J=I 

where {w1 };' are the weights, n is the number of RBF centers, 11-11 denotes the 

Euclidean norm, and ¢(.) represents a RBF. 

The most popular RBF is the Gaussian function <!>(x) = exp(- x2 /2cr ), 

where O" is a constant controlling the radius of influence of the basis function. A 

smaller O" would give more weight to the samples that are closer to the prediction 

location. In contrast, a larger O" would distribute weightings more evenly across 



STOCHASTIC RESERVOIR MODELING 155 

all the samples. Other examples of RBFs are multiquadratic and inverse­

multiquadratic7. For demonstration purpose, we will use the Gaussian RBF in our 

study. 

From Equation (1), it is obvious that RBFNNs are posed as a general 

linear least-squares problem: the regression of a target variable z(x0 ) on an input 

set of covariates x0 given the training data pairings {(x~,zj(x~,z2i ... ,(x~,zN)}. 

The unknowns are the weights {w1 t and can be obtained by setting 

a(t(zk (x0 )-z; (x0 ))2 J = 
0 

aw1 
(2) 

Radial Basis Centers 

The most critical decision for setting up a RBFNN is the number of basis 

centers in the hidden layer. If all the training inputs x0 are employed as the basis 

centers c ( n = N ), the weights can be obtained analytically by solving a system 

of linear equations and the estimator becomes an exact interpolator4, or 

z(x0 )= z • (x0 ). The results would be deterministic. If multiple realizations are 

desirable, we may need to obtain some measure of prediction confidence such as 

estimation variance. 

If, however, only a portion of the training inputs are retained as the basis 

centers ( n < N ), numerical methods such as gradient descent are required to 

iteratively minimize the errors (residuals) between the model outputs and target 

values as shown in Equation (2). This process is commonly known as "learning" 

in neural network jargon. In fact, the number of centers controls the degree of 

freedom in the estimator, and hence the degree of determinism in the output. The 

residuals may be sufficiently small, but zero residuals are practically impossible. 

Hence, this estimator is not an exact interpolator. Because of this inexactitude 

property, this creates an opportunity to perform stochastic simulation on the 

residuals (see later sections). This paper emphasizes the use of the inexact 

estimator, and the discussion hereafter will be directed to this estimator. 
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The decision on what reference vectors c are to be used is also crucial to 

the network performance. These vectors can be selected by prior knowledge, 

random picking or can be generated systematically. Many methods are available 

for choosing appropriate basis centers. The most intuitive rule is to locate points 

carrying important information about the spatial distribution trend of the data set. 

For example, the centroids from cluster analysis operated on the training inputs 

can be used as the centers for RBFNN learning. 

In this paper, we chose the basis centers using a knowledge-driven 

approach, which was based on a previously geological study providing regional 

information on the structural, sedimentary and diagenetic facies zones 11• In each 

of these zones, we then chose a location indicating a major geological 

environment. This information contains useful geological knowledge which 

cannot be captured by most numerical methods (e.g., cluster analysis). 

RBF Constant 

The RBF constant o- is another information parameter in RBFNN 

learning. Each center may use its own constant. The same constant can also be 

used for all centers. The latter case is often preferred for practical use of RBFNN, 

because it has only one parameter to be optimized. In this paper, we determine the 

optimum constant by examining the RBFNN learning behavior for different 

constants; the lower the total error, the better the constant. 

The use of only one RBF constant in the model essentially assumes an 

isotropic model, which may be too simplistic in nature. However, the 

incorporation of more elements (reflecting the true geological anisotropy) in the 

input vector can significantly relax the isotropic assumption4• This paper uses a 

set of geological hand drawings to provide such anisotropic information. 

RBFNN Learning 

In most error minimization algorithms, a stopping criterion is required to 

terminate the iterative loop. In neural network, a popular technique known as 
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"early-stopping" is used to terminate iteration. It is done by using a validation data 

set with patterns not in the training set. The validation set is fed into the network, 

and the network stops at the minimum error on the validation set rather than the 

training set. This avoids the over-fitting of the data and gives better 

generalization 7. The trained network can then be used for prediction. 

In reservoir modeling, however, we often do not have enough data points 

to be used for the validation purpose. We therefore propose the use of the 

correlation range of the variogram to define the optimum point for early-stopping. 

We first calculate the variograms of the residuals at certain intervals of iterations, 

followed by fitting a model to the data. The correlation range is then defined at 

various iterations. In spatial analysis, the larger the range, the stronger the 

correlation between the residuals, and vice versa. This means that, if the network 

learns well, the range would be close to zero (i.e., no spatial correlation between 

the residuals). This is equivalent to claiming that all the essential features of the 

data set have been extracted by neural learning. What is left would be white noise. 

Thus, the optimum point is defined as the iteration number where the range 

reduces no further. This is essentially the same as early-stopping, but we use a 

spatial performance criterion rather than simple error measures such as the use of 

error squares, average error and error skewness3. 

Combining Neural Networks with Kriging 

Most neural network estimators are inexact interpolators. In Kanevski et 

al. 12, the authors proposed a combined use of a multilayer perceptron 7 (an inexact 

estimator) and kriging to interpolate radionuclides for an environmental problem. 

This is the so-called neural network residual kriging (NNRK), which is an exact 

interpolator. The basic idea is to treat each estimate z:NRAx) as the sum of two 

components: 

(3) 
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where z:N(x) is the neural network estimate indicating the non-linear component 

(large-scale non-stationary features), and &(x) represents the stochastic error 

component (small-scale stationary features), which is practically impossible to be 

modeled by a neural network. Based on the implication from Equation (3), the 

authors treated the residuals as &(x) and generated a &(x)-map using kriging. The 

residuals were subsequently added to the neural network estimates, and hence 

z(x 0 )=z:NRK(x0 ). In Kanevski et al.13' 14, the authors also extended the 

methodology and modeled the residuals by cokriging and simulated annealing 

respectively. 

In Wang et al.3, the authors used a similar approach with a different neural 

network paradigm, the inexact RBFNN estimator or z :N (x) = z • (x), and extended 

the methodology to construct stochastic residual maps (and hence equally 

probable property maps) via sequential Gaussian simulation in a multivariate 

environment. This is referred to as the neural network residual simulation 

(NNRS). NNRS inherits all the advantages of NNRK with the capability to 

perform stochastic simulation. The integrated paradigm also allows the conversion 

of a complex multivariate problem to a simple univariate one, because we need to 

model only the variogram of the porosity residuals after neural learning. This 

offers a significant advantage over conventional cokriging, which requires tedious 

modeling of cross-covariances when many types of secondary (soft) data are used. 

CASE STUDY 

Oilfield Characteristics 

The A'nan Oilfield is located in a compound basin formed in the Mesozoic 

and Cenozoic Era in north China. The average porosity ranges from 7% to 14% in 

the cored wells, and there are complex geological controlling factors on the 

porosity distribution in its oil-bearing stratum. In this paper, we used the above 

methodology to model the 2D porosity distribution in this oilfield. We set up 
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FIG. 2. The geological templates showing the distribution of sedimentary and 
diagenetic facies. a) Grayscale represents the relative thickness of the 
coarse sediments (dark: thick; light: thin). The north border of map a) is 
the location of Arshan fault. Conditioning points are shown as "x". b)-t) 
Grayscale represents the certainty of each diagenetic facies distribution 
(dark: certain; light: uncertain). Each unit in the axis represents 300 m. 

1,100 ( 44 by 25) gridblocks around the case area. Fig. 2 shows the geological 

templates of the field, which are drawn by expert geologists according to their 

geological knowledge. Fig. 2a also shows the locations of the conditioning points, 

which are denoted by "x" ( 41 in total). Average porosity values are available at 

these points. 
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Along the north border of the oilfield, there is a large-scale tensional and 

syndepositional normal fault stretching approximately from east to west, and the 

oilfield is located in the southern dropping side of the fault (Fig. 2a). With the 

activity of this fault, a reverse dragging anticlinorium was formed in the south 

dropping side, and several secondary faults were also formed in the anticlinorium 

area. Meanwhile, the syndepositional subaqueous intermediate and basic fissure 

volcanic eruptions occurred along the large-scale fault. The sedimentary system of 

the oil-bearing stratum is fan-delta-lacustrine system. Fig. 2a shows the relative 

thickness of the coarse sediments in the sedimentary sequence. 

The diagenetic events that occurred in the burial diagenetic process were 

very complex. Five different diagenetic facies were identified 11. The spatial 

distribution of the diagenetic facies was primarily controlled by the flow 

directions of the compacted pore water, and transitional facies do exist laterally 

after the burial diagenetic process. Hence, the facies distribution cannot be 

described by the probability concept (e.g., facies proportions) as typically done for 

sedimentary facies. Therefore, we used the possibility concepts 15 (related closely 

to the fuzzy logic concepts) to derive a set of maps (Figs. 2b-f) expressing the 

degree of membership belonging to each of the diagenetic facies across the 

oilfield. We simply call the values the "certainty values." The higher the certainty 

value of a diagenetic facies, the more likely the point will behave as that facies. 

Note that the major difference between probability and possibility concepts is that, 

in possibility theory, the sum of all the certainty values at a given location does 

not necessary equal to one. 

In this oilfield, the distribution of porosity is much more complex than in 

normal sedimentary petroleum reservoirs because of the complexities of the 

structure, ancient volcanic eruption, special sediments and burial diagenesis. The 

main oil-bearing space is the secondary dissolved pores, so the distribution of 

secondary dissolution facies (the diagenetic facies "C" shown in Fig. 2d) was very 

important for porosity distribution in this area. From geological study, it is clear 

that the porosity of the reservoir should increase with the certainty value of the 

diagenetic facies "C." Other facies also relate to the porosity distribution. For 
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FIG. 3. Porosity variogram fitted with a spherical model. 

example, the porosity should be small when the diagenetic facies "E" (Fig. 2f) is 

likely to exist. Therefore, it is important to incorporate such information into the 

modeling algorithm so that the geological framework could be honored. 

Porosity Variogram and Ordinary Kriging 

Fig. 3 shows a variogram of porosity data at the conditioning points. A 

spherical model was fitted to the variograms. The range and sill values were about 

8.5 and 1.5, respectively. Ordinary kriging was performed using the fitted 

· variogram model. 

Fig. 4 shows the resulting porosity map. The results were not satisfactory. 

This conclusion was drawn purely based on qualitative comparison with the 

conceptual geological model developed in our previous studies 11• For example, 

there was a large amount of syndepositional volcaniclastics along the large-scale 

normal fault, and the thick volcaniclastics were harmful to the formation of the 

oil-bearing zones. Hence, the porosity along the fault should be very low and 
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FIG. 4. Porosity map from ordinary kriging. 

reduced quickly towards the north. From Fig. 4, we can see that the porosity 

values are still very high near the fault, and hence the results were considered 

unacceptable. 

In earth sciences, the reservoir system is always open, and hence no 

objective truth is available for the verification of any reservoir models 16. History 

matching is theoretically unsound to be used as means to verify the reservoir 

models 16• For example, if two totally different reservoir models could produce the 

same outputs (including resulting statistical measures), there is no way to evaluate 

the reliability of the models. 

1 I 

10 

Our comparison approach ( currently qualitative) strongly emphasizes 

whether the results are geologically interpretable 2• We recommend that the most 

effective and reliable way to improve the model is to directly incorporate reservoir 

geology ( e.g., geological rules) into the modeling algorithm, such as the use of 

RBFNN as proposed in this paper. However, we should not ignore the fact that 

this approach may support incorrect geological intuitions. 
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According to the distribution pattern of structural, sedimentary and 

diagenetic facies, we first identified nine important zones with distinct reservoir 

environments in this oilfield, and hence nine reference vectors were used as the 

radial basis centers of the Gaussian type. The vector has eight dimensions: x­

coordinate, y-coordinate, the sedimentary factor (Fig. 2a) and the five diagenetic 

facies factors (Figs. 2b-t). All the elements were normalized into the range (0, I). 

In this case study, 41 porosity values across the field were used as the 

conditioning points for training the network. We used a standard gradient descent 

algorithm to minimize the residuals. Different basis constants were used. The 

learning curves (root-mean-square error, RMSE, versus iterations) are shown in 

Fig. 5. The lowest error was obtained at cr=0.15 after 3,000 iterations. This 

became the optimum constant for the study. 
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FIG. 6. Variogram parameters to define the optimum termination point. 

Residual Variogram Analysis 

The objectives of the variogram analysis are two-fold: 1) determine the 

optimum point to terminate iteration and 2) perform residual kriging and 

simulation. In order to locate the optimum point, we first trained the RBFNN with 

cr = 0.15 . This was followed by calculating the variograms of the residuals at 

every I 00 iterations. The data were fitted with a spherical model. 

Fig. 6 shows the sill and correlation range obtained from the model as a 

function of iterations. The sill reduced with iterations because the estimates were 

closer to the actual values and hence the residual variances reduced. The range 

reduced from about 5 to 2 (60% reduction) with iterations. This indicated that the 

correlation of the residuals became weak (smaller range) as the amount of features 

extracted from the RBFNN increased. The optimum termination point was found 

to be about 1,800 iterations as the reduction of the correlation range became 

insignificant, that is, prolonged training does not lead to significant reduction of 

the parameter. Therefore, training was terminated at 1,800 iterations. 
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FIG. 7. Porosity map from RBFNN. 

Fig. 7 shows the resulting map from RBFNN after 1,800 iterations. The 

results reflected the geological trends as shown in Fig. 2 because RBFNN 

incorporated the soft geological templates. Hence the results were considered 

superior to ordinary kriging (Fig. 4). The interpolations, however, were not exact 

and only one deterministic image was produced. 

Residual Kriging and Simulation 

To restore the conditioning data, residual kriging was performed using the 

residual variogram obtained at 1,800 iterations (Fig. 8a). The correlation range of 

the residual variogram was about 2. Most spatial features were learned by RBFNN 

and only a small amount of information was left unlearned. 

After residual kriging, the interpolated residuals were added to the 

RBFNN estimates (Fig. 7). The NNRK results are shown in Fig. 8b. The same 

variogram was also used to simulate the residuals using sequential Gaussian 

simulation. The residuals were also added to the RBFNN estimates. Two NNRS 

realizations were generated and are shown in Figs. 8c-d. All the porosity values 
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were restored at the conditioning points, and the final results also inherited the 

geological trends in the reservoir. 

CONCLUSIONS 

This paper introduces a combined used of radial basis function neural 

networks (RBFNNs) and geostatistics for stochastic reservoir modeling. RBFNNs 

are first used to estimate the large-scale variations (major trends), followed by 

estimating/simulating the small-scale variations (residuals) from kriging and 

sequential Gaussian simulation. Variogram analysis also provides valuable 

information, particularly the correlation range, to evaluate the performance of 

neural networks. 

The integrated technique is demonstrated in the A 'nan Oilfield in north 

China, where porosity is interpolated using the sedimentary and diagenetic 

patterns. According to the geological knowledge available, the results from the 

integrated technique are superior to ordinary kriging alone. It is primarily due to 

the fact that the integrated technique is able to incorporate the multivariate 

geological templates (hand drawings from expert geologists) into the model 

effectively, and hence the results inherit the expert knowledge about the spatial 

continuity of the reservoir properties obtained from conventional geological study. 

The technique is also fast and straightforward and does not require any tedious 

modeling of cross-covariances. 

Future work will investigate advanced techniques to further optimize the 

network performance and extend the methodology to 3D modeling. 
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